OMG CORBAmed DTF

Healthcare Resource Access Control (HRAC)

Initial Submission

2AB, InC.

Baptist Health Systems of South Florida
CareFlow|Net, Inc.

IBM

OMG TC Document corbamed/98-10-02
18 October 1998

10/19/98 1:06 PM Page 1 of 47

© Copyright 1998 by 2AB, Inc.

© Copyright 1998 by Baptist Health Systems of South Florida
© Copyright 1998 by CareFlow|Net, Inc.

© Copyright 1998 by IBM

The submitting companies listed above have all contributed to this "initial” submission. These
companies recognize that thisinitial submission isthe joint intellectual property of all the
submitters, and may be used by any of them in the future, regardless of whether they ultimately
participate in afinal joint submission.

The companies listed above hereby grant a royalty-free license to the Object Management Group,
Inc. (OMG) for worldwide distribution of this document or any derivative works thereof, so long
asthe OMG reproduces the copyright notices and the bel ow paragraphs on all distributed copies.

The material in this document is submitted to the OMG for evaluation. Submission of this
document does not represent a commitment to implement any portion of this specification in the
products of the submitters.

WHILE THE INFORMATION IN THISPUBLICATION ISBELIEVED TO BE ACCURATE,
THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND WITH
REGARD TO THIS MATERIAL INCLUDING BUT NOT LIMITED TO THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
The companies listed above shall not be liable for errors contained herein or for incidental or
consequential damages in connection with the furnishing, performance or use of this material. The
information contained in this document is subject to change without notice.

This document contains information which is protected by copyright. All Rights Reserved. Except
as otherwise provided herein, no part of thiswork may be reproduced or used in any form or by
any means graphic, electronic, or mechanical, including photocopying, recording, taping, or
information storage and retrieval systems without the permission of one of the copyright owners.
All copies of this document must include the copyright and other information contained on this

page.

The copyright owners grant member companies of the OMG permission to make a limited number
of copies of this document (up to fifty copies) for their internal use as part of the OMG evaluation
process.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to
restrictions as set forth in subdivision (c) (1) (ii) of the Right in Technical Data and Computer
Software Clause at DFARS 252.227.7013.

CORBA, OMG and Object Request Broker are trademarks of Object Management Group.

10/19/98 1:06 PM Page 2 of 47

History

Initial Submission Draft 1 | 18 October 1998
The Editor of this document is Carol Burt of 2AB.

Theinitial submission to the OMG Healthcare Resource Access Control Facility (HRAC) isthe result of

collaboration between the four submitting companies listed on the cover and the list of supporting companies
named in theinitial submission.

10/19/98 1:06 PM Page 3 of 47

Table of Contents

1. Preface 5
1.1 SubmisSion CONLACT POINESccoiiiiiieeeee e 5
1.2 SUPPOItING OrganiZaAtiONS.uuuu i eeeeieeiiiiia e e et et e e e e e ee ittt e e e e eeeeabba e e e aaaeeetbbn s e e eaaaeeennnnnns 5
1.3 CONVENTIONS. .o 5
1.4 TeIMINOIOQY ... 6
1.5 PrOOf OF CONCEPT. ... 7
1.6 Changes to Adopted OMG SPECITICALIONS.ccoiiiee i 7
1.7 RespoNnse t0 RFP REQUITEMENTS......cccoii oo 7

2. Overview of Response 11
2.1 INTFOTUCTION. ... 11
A A b 1T o [I € To = TP 12
2.3 Reference MOEIS..........cooiiiiiiii 14
2.4 Discussion Of PropoSal SCOPE.......cooeuiuiuiiiiaeii ittt e e et e e e e e eereaaaas 19
2.5 OULSTANING ISSUBS ... ittt e et ettt e e e e e e et ettt e e e e e e e e ee bbb e e e e e aeeeerannnas 20

3. DfResourceAccessControl module 23
I F0 R 1Y/ o2 TP TPTPTTR 24
3.2 ACCESSDECISION INLEITACEcciiiiiiiiiiii i 27
3.3 DynamiCAUIDULESErVICE INEITACEuuui it e e ee s 28
3.4 PolicyEvaluatorLoCator INtEITACEuuuuiiiieeii et 28
3.5 PolicyEvaluatorLocatorAdmin iNtEITACEccooeiuiuiiii e 29
3.6 POlCYEVAIUALOr INTEITACE. ettt e e e e e et a e e e e e eeeaaanas 30
3.7 PolicyEvaluatorAdmin iNTEITACE........c.uuiei et a e e e eereaaaas 31
3.8 DecisionCombinator INtEITACEcoviiiiiiiiiieie 32

4. DfHealthCareResource module 34

5. Conformance Classes 35

6. Appendix - Use Case Examples 36
6.1 Generic ADO Object Interaction DIagramuuuuuiii ittt e e e eereaanas 36
6.2 Healthcare Scenario: Out-patient Visit to Attending Physiciancccooooiiiin, 37

7. Appendix - Complete IDL 45

10/19/98 1:06 PM

Page 4 of 47

1. Preface

Thissubmission is a response to CORBAmMed RFP, Healthcare Resource Access Control (HRAC),
Object Management Group (OMG) document number corbamed/98-02-16.

1.1 Submission Contact Points

Carol Burt

2AB

3178-C Highway 31 South
Pelham, AL 35124

Konstantin Beznosov

Baptist Health Systems of South Florida
6855 Red Road

Coral Gables, FL 33143

205 621 7455 305 596 1960
cburt@2ab.com beznosov@baptistheal th.net
V. “Juggy” Jagannathan Bob Blakley

CareFlow|Net, Inc. IBM

235 High Street, Suite 225
Morgantown, WV 26505
304 293 7535

juggy @careflow.com

11400 Burnet Road, Mail Stop 9134
Austin, TX 78756

512 838 8133

blakley @us.ibm.com

1.2 Supporting Organizations

The following organizations have been involved in the process of devel oping, prototyping and/or
reviewing this submission. The submitters of this response thank them for participating and

giving their valuable input. A special thank you goes out to those organizations. The editor would
like to extend a special thanks to John Barkley of NIST for providing text and a detailed review of

each version of this submission.
Concept Five
Inprise
Los Alamos National Laboratory
National Ingtitute of Standards (NIST)
National Security Agency (NSA)
Philips Medical Systems

1.3 Conventions

| DL appears using this font and in a border.

10/19/98 1:06 PM

Page5 of 47

1.4 Terminology

Access Decision Object (ADO) - The HRAC object that implements access decision functions.
From the perspective of a client requesting an access decision of HRAC, thisisthe only interface
that they are required to use. Although similar in function to the CORBAsec object of the same
name, the HRAC ADO has a different signature and semantics.

ADO Client - the immediate invoker of the HRAC Access Decision Object. This could be an
integral part of the application that controls the secured resources or it could be an interceptor that
decides whether to allow the CORBA Request to reach the application.

Access Policy - the policy or rules that govern access to a secured resource.

Attributelist - alist of security attributes that are used to determine whether access should be
allowed. An AttributeList may contain both static and dynamic attributes.

Authorization - The granting of authority, which includes the granting of access based on access
rights.

Component - A cohesive set of software services

Credentials - Information describing the security attributes (identity and/or privileges) of a user or
other principal. Credentials are claimed through authentication or delegation and used by access
control.! The attributes contained in an HRAC AttributeL ist are derived from CORBAsec
credentials, if possible.

Dynamic attribute - a security attribute that can only be determined at the time an access decision
isrequested. Dynamic attributes are often based on the relationship between a principal and the
secured resource (such as attending physician) and cannot be statically configured. This
submission allows dynamic attributes to be resolved and used during the access decision
computation.

I dentity (attribute) -A security attribute with the property of uniqueness; no two principals
identities may beidentical. Principals may have several different kinds of identities, each unique
(for example, a principal may have both a unique audit identity and a unique access identity).
Other security attributes (e.g. groups, roles, etc...) need not be unique.’

Naming Authority - Any organization that assigns names determines the scope of uniqueness of
the names and takes the respons bility for making sure the names are unique within its name
gpace. In the same way that 1D values are meaningful only within the context of their ID Domains,
names are unique only within the context of their naming authority.?

Operation - an action which may be performed on a secured resource (such as create, get, set,
use..). Operations are represented within the HRAC as strings.

Principal - A user or programmatic entity with the ability to use the resources of a system.*

Privilege (Attributes) - security attributes which need not have the property of uniqueness, and
which thus may be shared by many users and other principals. Examples of privilegesinclude
groups, roles, and clearances. *

10/19/98 1:06 PM

! This definition is taken from the OMG CORBAsecurity 1.2 specification. OMG document
number ptc/98-02-01

2 This definition is taken from the OMG CORBAmed Person | dentification Service (PIDS). OMG
document number corbamed/98-02-29

Page 6 of 47

Secur ed Resour ce - a“secured resource’ is any valuable asset of an application owner, which is
accessed by an application on behalf of a principal using it, and access to which isto be controlled
according to the owner’ sinterests.

Security attributes - Characteristics of a principal which form the basis of the system’s policies
governing that subject.?

Static Attribute - a security attribute that is (typically) statically configured by an administrator.
Examples would be access id:john_doe or role:physician.

System - An application or set of applications that interact with each other, interact with the
HRAC or implement HRAC. System in this context is synonymous with application. Examples of
systems might include a hospital or clinical information system, an ancillary system such asalab
or radiology system, or a financial/administrative system such asan ADT.

1.5 Proof of Concept

Theinitial submission is based on experience gained in implementation of proprietary access
control systems by 2AB, Concept Five, and IBM and with regquirements input from end user
organizations such as Baptist Health Systems of South Florida, and Healthcare vendors such as
Phillips Medical Systems and CareFlow|Net. Theinterfacesin theinitial submission will be
prototyped by at least one submitting organization prior to the final submission.

1.6 Changesto Adopted OMG Specifications

No changes to the existing OMG specifications are needed by this specification.

1.7 Responseto RFP Requirements

1.7.1 MANDATORY RFP REQUIREMENTS

Use of the CORBA Security service credentials as the source for identifying caregivers privileges

The submission's AccessDecision Interface takes a Security::Attributel ist as the source for
identifying caregivers privileges. Thisattribute list isdirectly accessible from the
Security::Credentials. The Credentials object itsalf is not passed because it islocality constrained
whereas the submission's AccessDecision object isnot locality constrained.

Ability to define secured resource categories.

The ResourceName is a sequence of strings where the first string in the sequence is required to be
a NamingAuthority::QualifiedNameStr. This allows an implementation to define categories of
secured resources and for a client to determine from the resource name how those categories are
arranged into hierarchies. The use of the NamingAuthority module allows these categoriesto be
unique.

10/19/98 1:06 PM

% This definition is taken from the OMG CORBAsecurity 1.2 specification. OMG document
number ptc/98-02-01

Page 7 of 47

An interface for defining access control rules for secured resources based on credentials.

The submission does not provide interfaces for defining rules, asthere are a large number of rule
languages supported by existing products, and there does not appear to be a consensus regarding
which language or languages should be chosen. The submission does provide interfaces for

applying named policies (presumably created and named through proprietary interfaces) to
secured resources.

A set of Healthcare specific secured resources.

The final submission will define a set of standard resource names for use in healthcare
environments. Theinitial submission does not yet contain these definitions.

An interface to an access control decision facility that may be used to request access control decisions.

The AccessDecision interface provides this capability

1.7.2 OPTIONAL RFP REQUIREMENTS

Provide the ability for secured resources to be grouped for the purpose of defining access control rules

The submission does not congtrain an applications assignment of ResourceNames to application
entities; this allows applications to create ResourceNames which refer to groups of application
entitiesif desired.

An interface for defining access control rules based on attributes of the Principal (in addition)

The submission does not constrain the form of access control rules. The AccessDecision interface
acceptsthelist of Principal attributes as an input parameter to the access allowed() method; this
allows AccessDecision objects whose rules are based on Principal attributes to receive the
information they need to have in order to evaluate their rules. As noted above, the submission
does not provide an interface for defining access control rules.

An interface that extends the definition of access control rules to include context sensitive access control
based on a) the day and time when the resource is accessed, b) the location of an invoking principal, c) the
values of request parameters.

The AccessDecision interface does not need any explicit parameters to support rules based on day
and time; implementations can support such rules using the interfaces defined in the submission.

The submission does not support access control rules based on the location of the invoking
Principal, unlessinformation about the invoking Principal's location is provided as a security
attribute (it is not clear to the submitters what data could be used to define the invoking Principal's
location). The submission does not support access control based on the values of request
parameters, unless parameter value information is encoded into the ResourceName by the
application.

An interface that extends the definition of the access control rulesto include notion of the relationship
between a patient and a caregiver

10/19/98 1:06 PM

The DynamicAttriubuteService interface was designed specifically as a generic way to support
relationship based (and other dynamic-attribute based) decision rules. The
DynamicAttributeService interface permits the AccessDecision object to determine at runtime
what dynamic attributes (e.g. relationship between caregiver requesting access and patient to
whose record access is requested) apply to the requested operation. Each PolicyEvaluator object

acceptsasinput alist of attributes, including dynamic attributes, and uses these to make its access
decision.

Page 8 of 47

A reference object model for the healthcare domain that provides a sufficient foundation for access
decision logic.

The submission contains a description of the access control model (including object/interface
diagrams and object interaction diagrams) and its interaction with invoking healthcare
applications.

An interface that permits management of policy, which controls how multiple access control policy
decisions governing access to the same resource are reconciled.

The submission defines a DecisionCombinator interface that meets this requirement.

1.7.3 DISCUSSON POINTS REQUESTED

How new CORBAMed specifications will employ the submitted specification.

Dueto the generality of the submitted response, the specified service can be used in various ways.
The usage patterns will highly depend on a particular enterprise, its workflow and access control
policies. Usage of the service even in systems compliant with CORBAmed specificationsis
expected to vary from company to company. On the other hand, the submission team believes that
semantics of the interactions between an HRAC service and its clients should be defined
completely and precisdly. It isthe intent of the submission team to provide in further revisions of
this response a complete and precise definition of the semantics. Besides defining semantics of
interactions between HRAC service and its clients, the response provides sample scenarios and
use cases. The appendix in Section 6 of the response provides such scenario's and use cases along
with discussion about how the specified serviceisintended to be used in general casesand
specifically in healthcare applications compliant with the OMG standards.

How existing CORBAMed specifications are to be modified.

The submitters do not believe any modification is necessary for existing CORBAMed
specifications to use the services of an HRAC, however it might be useful for some standard
ResourceNames to be defined within the CORBAMed community for common resources within
standard services. Such definition would be a compatible extension of existing specifications.

Scalability and Performance of the proposal

10/19/98 1:06 PM

The process of making authorization decisions on fine grained resourcesis an expensive and
inefficient action when compared to the course interface/operation control provided by the existing
CORBA access control facilities. The HRAC service isintended for use when granularity and/or
expressiveness of CORBA security access control model isinsufficient. Thus, the submission
team believes that use of HRAC serviceis a necessary "evil" in terms of overall system
performance. Performance impact can be kept to a minimum by clever implementations, but it
cannot be eliminated in any security-aware application.

Scalability and performance of systems implementing the proposed specification and usage of it
by other CORBA-compliant systems are highly dependent on the following factors:

- Internal design and implementation of the HRAC-compliant service, including ability to
cache policies.

- Co-location of HRAC servicesand HRAC clients.
- Distribution of load over multiple instances of the HRAC services.
- Organization of the resource space.

- Complexity of access control policies.

Page 9 of 47

Taking the above discussion into account, the submission team does not believe there is anything
in the proposed design model of HRAC service that would preclude implementation and
deployment of scalable, high performance HRAC services.

1.7.4 Mechanisms provided for extensbility

Thisdiscussion will be provided in the final submission after outstanding issues are resolved.

10/19/98 1:06 PM Page 10 of 47

2. Overview of Response

2.1 Introduction

This document is a response to the Healthcare Resource Access Control RFP. The response
describes a specification of Healthcare Resource Access Control (HRAC) Service. HRAC service
is a mechanism for obtaining authorization decisions and administrating access control policies. It
enables a common way for an application to request and receive an authorization decision. The
service isintended to be used by security-aware applications.

This submission provides access control functionality not supported by CORBAsecurity which is
required in healthcare and other application environments. It isintended to be implementable
using CORBAsecurity asabase; it isalso intended to be implementable in ORB environments
which do not provide CORBAsecurity. For detailed information about the healthcare
environment's access control requirements, refer to the HRAC RFP (OMG document number
corbamed/98-02-23).

In the proposed design, authorization logic is encapsulated within an authorization service that is
external to the application. In order to perform an application-level access control, an application
regquests an authorization decision from such a service and enforces that decision. A simplified
schema of application flow is depicted in Figure 1.

Target
Object AccessDecision

(ADO client)

\ 1. Application Request) \— 2. Authorization request —J

\ 4. Reply to application request _) — 3. Reply to authorizaition request .—)

CORBA Object Request Broker

Scope is Application Scope is HRAC

10/19/98 1:06 PM

Figurel

Page 11 of 47

The sequence of the interaction, illustrated by Figure 1, isasfollows:

1. Anapplication client invokes an operation of the interface provided by the target object. The
object request broker transfers this request to the target object and causes invocation of the
appropriate method in the target object.

2. While processing the request, the target object requests authorization decision(s) from the
Access Decision object by invoking the access_allowed() method of the ADO.

3. TheAccess Decision object consults other objects that are internal to the HRAC (described in
this submission) to make an access decision. The accessdecision is returned to the Target
Object (ADO client) as a boolean.

4. Thetarget object, after receiving an authorization decision, isresponsible for enforcing the
decison. If accesswas granted by the ADO, the target object performs the requested
operation and returnsthe results. 1f access to secured resources was denied, the target object
may return partial results or raise an exception to the Client.

A detailed description of the object model and design of the ADO (and its interaction with other
HRAC objects) can be found in Section 2.3 of this submission.

2.2 Design Goals

The submitters had the following goals in mind during the design of this submission:

2.2.1 Conservatism:

The proposal should extend the CORBAsecurity mechanisms rather than replacing them with a
different model. The proposal should be implementable usng CORBAsecurity as a base.
Specifically, the proposal should use the CORBA security attribute structure to identify
authenticated subjects to the access control mechanism.

2.2.2 Minimality:

The proposal should define the smallest number of interfaces and methods possible. The proposal
should be easy to implement, and implementations should be small.

2.2.3 Smplicity:

The proposal should have a smple administrative model and atrivial runtime-programming
model.

2.2.4 Generality:

The proposal should be applicable to and useful in domains other than healthcare.

10/19/98 1:06 PM Page 12 of 47

2.2.5 Relevance:

The proposal should satisfy the healthcare access control requirements set forth in the HRAC RFP.
Specifically, the proposal should:

(a) Define a notion of controlled resource, which allows extension of CORBA security protection
to system entities other than CORBA objects.

(b) Support enforcement of policies which take the following factors into account when making
access control decisons:

relationship between the requester and the accessed resource or its owner, subject, or
referent

value or sendtivity of information contained within resource

time (e.g. time of day, day of week)
(c) Support management of access control policy in a policy-language-independent way
(d) Support OMG PIDS and COASS access scenarios

2.2.6 Flexibility:

The proposal should support a wide variety of policies (especially healthcare-appropriate policies).
The proposal should be implementable using a variety of policy management and enforcement
engines (including existing healthcare security packages).

2.2.7 Scalability:

The proposal should scale well, both in terms of runtime performance and in terms of management
interface smplicity and management data size.

10/19/98 1:06 PM Page 13 of 47

2.3 Reference Models

10/19/98 1:06 PM

Two views of the HRAC are presented in the following models. Thefirgt isthe access decision
mode. This represents the relationship of objectsinvolved in making an access decison. The
second view isthe Administrative view and represents how an HRAC is configured.
Administration of Access Policy is beyond the scope of the HRAC and is clearly indicated as such
on thismodel diagram.

The Healthcare Resource Access control facility reference model defines a framework within
which awide variety of access control polices may be supported. The reference models bel ow
clearly indicate the scope of this submission response by heavy dotted lines. In some cases there
are types that occur within the scope of this response that represents concepts and/or services that
lie beyond the scope of the HRAC. An example of thisisthe concept of a*secured resource”
which isonly represented within the scope of the HRAC by a ResourceName. Where this occurs
these external concepts appear in the model, but outside the dotted line to aid the reader in an
understanding of the relationship between the HRAC and the external concepts and/or services.
The appearance of objects outside the scope of the submission is conceptual and is presented only
to aid in understanding the types that occur within the HRAC.

HRAC typesthat represent or encapsulate exter nal concepts and/or services:

ResourceName: A “secured resource” is represented within the HRAC by a ResourceName that
isa sequence of strings.

Operation: Secured resources have one or more operations which may be performed on them
(such as create, get, set, use..). These operations are represented within the HRAC as strings.

PolicyName: “Poalicy” (the rulesused for controlling access to secured resources and their
operations) is beyond the scope of the HRAC, but when referenced within the HRAC, isidentified
by a PolicyName that is a string.

DynamicAttributeService: The DynamicAttributeService may consult an external
AttributeEvaluator. The submitters plan to include standard administrative interfaces for this
facility in the revised submission.

Page 14 of 47

2.3.1 Access Decison Model

1 0.1
| |

SecuredResource

17 pag——
o &

| I

Scope of the HRAC Service 3 I
I

I

ADO client
I IO..* ! !
| /', ! AttributeEvaluator |
| consults 0..1 | DynamicAttribute /Consults I i |
Service
| / 1.* I
| consults
| 1.* I
PolicyName I
| . 1.* It _i, PolicyEvaluator A8 11
| AccessDecision consults Locator |
* .
| L. represented by
I > S
consults locates |
| 1.* | 1
| consults PolicyEvaluator |« 0.1 locates lo.1 .
| evaluates————f— > Palicy
| | :
1 .
| [0..1
I
Decision 1 I
I Combinator «—] | defines
| | access policy
' |
' |
I
I
I
I
I
I
I
|

Healthcare Resource Access Control (HRAC)
Access Decision Model

An Access Decision is requested by a client by invoking the access _allowed() method of the AccessDecision object
(ADO) passing a ResourceName, operation, and SecAttributes. The ADO consults a DynamicAttributeService to
obtain an updated list of SecAttributes that include any dynamic attributes currently applicable for this access
decison. The DynamicAttributeService may consult externally provided dynamic attribute evaluators as part of it's
implementation. The AccessDecision object also consults the PolicyEvaluatorL ocator to abtain object references
for the PolicyEvaluator(s) and the DecisionCombinator that are required for an accessdecison. The
AccessDecision abject consults each PolicyEvaluator(s). PolicyEvaluators are responsible for interpreting access
policy that controls access to the ResourceName/operation. The AccessDecision object consults (passes the results
of those evaluate() methods) the DecisionCombinator who is responsible for understanding the policy that controls
how a series of results from PolicyEvaluators are combined. It isthe response from the DecisonCombinator that is
returned to the client.

10/19/98 1:06 PM Page 15 of 47

|

boolean
access_allowed(in string operation,
in ResourceName,
in AttributeList)

\

BooleanList
multiple_access_allowed(
in AccessDefinitionList,

in AttributeList); AccessDecision

N\

PolicyDecisionEvaluators
get_policy_decision_evaluators(
in ResourceName);

DecisionResult
evaluate(
in ResourceName,
in string operation,
in AttributeList)

DecisionResultList
multiple_evaluate(
in AccessDefinitionList,
in AttributeList)

AttributeList
~get_dynamic_attributes(
in AttributeList,
in ResourceName,
in string operation);

DynamicAttribute
Service

PolicyEvaluatorLocator
readonly attribute
PolicyEvaluatorLocatorAdmin

\

PolicyEvaluator
readonly attribute

PolicyEvaluatorAdmin

boolean
combine_decisions(
in DecisionResultList)

DecisionCombinator

Interfaces involved in Access Decisions

The interfaces and associated methods are described in detail in Section 3 of this submission.

10/19/98 1:06 PM

Page 16 of 47

2.3.2 Administrative Model

Administrator

administers
= — g ———————— e e ————— -
I | 0.
I
| PolicyEvaluator :
I PolicyEvaluator I administers
| LocatorAdmin: |——————associate |
PolicyLocator
I I
| applies ™~) |
| policy associates |
Decision
| Combinator |
I I 0.1
I I
I 1 3‘ 1 % I Policy
I A | I
+l | 0.1 ol
I A ‘
Operation) assigns ,
I i I access policy represented
| v 1.2 N\ by
| N represelr]ted by
PolicyEvaluator
| Admin : ——————associate | .
| PolicyEvaluator has 0.1
| \)
| SecuredResource
| :
| 1
| roomene -
I .
| Scope of the HRAC Service
- - L L L L L =

Healthcare Resource Access Control (HRAC)
Administrative Model

The administrative model of HRAC is designed to allow replaceable HRAC objects within an implementation and to

allow HRAC clientsto apply previoudy defined policy to resources.

The adminigtrative modd is not intended to provide the Administrative interfaces necessary to define access policy.
The definition of access policy (the rulesthat govern access to secured resources/operations) is outside the scope of

10/19/98 1:06 PM

Page 17 of 47

this submission. This Administrative model clearly indicates this by placing Policy administration outside the
dotted line that delineates the scope of the HRAC submission.

The PolicyEvaluatorL ocatorAdmin interface is used to associate PolicyEvaluators and DecisionCombinators with a
ResourceName. Multiple PolicyEvaluators may be associated with a single ResourceName. These evaluators will
all be consulted during access decisions. Thereis only one DecisonCombinator provided for a ResourceName.
This combinator isresponsible for taking the results of the PolicyEvaluators evaluate() method and making a final
access decision. PolicyEvaluators have an endless series of options for implementation. For this reason, the
interface is public and evaluators may be “plugged-in” to an HRAC framework by vendors and/or users. Inthe
same sense, there are many possible policies for combining policy decisions. Some secured resources should not be
accessible unless all the PolicyEvaluators return ACCESS DECISION_ALLOWED. Other secured resources may
be accessible if any one of the PolicyEvaluators allow access. Defining an interface for the DecisionCombinators
allows custom combinators to be configured for a secured resource. It is possible to assign a default
DecisionCombinator.

The PolicyEvaluatorAdmin interface is used to apply an existing named access policy to a secured resource. An
application that wished to dynamically apply policy to newly created resources would be required to specify the
names of those policies. The policy would be configured by an administrator using the administrative interfaces of
the underlying access policy system and the required name associated with it (thisis outside the scope of the HRAC
admin interfaces). Once this had been accomplished, an HRAC client could apply this named policy using the
PolicyName to a ResourceName. The PolicyEvaluatorAdmin also allows default policy to be assgned “by name”
and alist of existing PolicyNames can be retrieved via the interface.

void
replace_evaluators(
in PolicyEvaluatorList,
in ResourceName)

void

apply_combinator(
in DecisionCombinator,

in ResourceName) ——p.
PolicyEvaluator

LocatorAdmin

\

void
replace_policy(

in PolicyName, void void

in ResourceName) add_policy(apply_default_combinator(\

in PolicyName, in DecisionCombinator)
in ResourceName) void

add_evaluators(
PolicyNameList void in PolicyEvaluatorList,

list_policy() apply_default_evaluators(in ResourceName)

in PolicyEvaluatorList)
void

set_default_policy(
in PolicyName)

PolicyEvaluatorAdmin

«—

Interfaces Involved in Administration

10/19/98 1:06 PM Page 18 of 47

2.4 Discussion of Proposal Scope

2.4.1 Scope as defined by the RFP

The CORBAmMed Healthcare Resource Access Control RFP defined the scope of proposals sought as follows:

10/19/98 1:06 PM

“ Mechanisms this RFP is asking for are sought to allow application systems to be unaware of
advanced security policies existing in healthcare enterprises where those systems are deployed.

This RFP scope is threefold:

1. tode-couple access control decision logic from application logic,

2. toprovide a standard interface for the definition of access control rules,
3. toprovide a standard interface for requesting access control decisions.

An illustration of the RFP scopeis provided in Figure 1. The RFP scopeislimited to the
additional security decision logic shown in the figure with striped background. It has a

“ Decision” interface to an interceptor(s) performing access control functions and an application
itself to consult such Security Decision Logic for access control decisions. The“ Admin” interface
allows defining access control rules.

Target

Client Objects

. ORB

Security
Service

Figure 1: A Possible Solution

The RFP islooking for a solution where individual applications, or target objects, play the most
minimal role possible in the realization of an enterprise security policy. Optimally, each
application’s, or object’s, contribution to security will be limited to requesting and enforcing
access control decisions - without knowing or caring about how the decisions are made. Thisthen

Page 19 of 47

allows the definition, implementation and management of each application, or object, and the
enterprise-specific security policy to be orthogonal. *

2.4.2 The Scope of this submission

Theinitial submission addresses the following scope issues of the RFP

1

to de-couple access control decision logic from application logic
The submission supports the separation of access control logic from the application. The

submitters are discussing extending this support in the final submission by allowing
applications to register dynamic attribute evaluators via a sandard interface.

to provide a standard interface for requesting access control decisions.

The AccessDecision interface provides this functionality.

I'n addition, this submission extends this scope to provide a framework that supports the

following:

1. replaceable authorization engines (PolicyEvaluatorL ocator, PolicyEvaluatorL ocatorAdmin,
and PolicyEvaluator)

2. custom integration of multiple authorization engines (PolicyEvaluatorL ocatorAdmin and
Decis onCombinator)

3. useof dynamic attributesin access decisions (DynamicAttributeService)

4. The application of pre-defined access policy to aresource. (PolicyEvaluatorAdmin)

The submission does not address the following scope issue of the RFP:

1

to provide a standard interface for the definition of access control rules

The submitters could not agree on IDL for the definition of access control rules. Thisis
primarily because there are so many diverse ways that people express access control policies
and accommodation from a single IDL interface for this diversity isnot an easy task. The
final submission may include an example of how the CORBAsecurity required rights model
could be used to provide for the definition of access control rulesif access control policy uses
a“required rights’ model. In general, the administration of access control policy wasfélt to
be out of scope of this submission.

2.5 Outstanding Issues

The problems described in this section are not yet addressed by the current submission. The
submission team intends to address some of them in future revisions of the proposed specification.

10/19/98 1:06 PM

Page 20 of 47

2.5.1 The abhility to apply complex logic to combining access policy decisions

Passing only alist of the PolicyEvaluator objects ternary decision resultsto the
DecisionCombinator, without identifying which PolicyEvaluator (and/or policies) generated each
result, does not support policies which impose precedence relations on PolicyEvaluators. In order
to support precedence based policies, it will be necessary for the DecisionCombinator to determine
what the precedence relationshi ps among the various ternary resultsit receives are. The submitters
intend to support precedence-based policies; the final submission will be enhanced to
accommodate precedence.

2.5.2 Understanding of Application Functionality or Data

Intimate understanding of an application functionality may be needed for proper exercising of
access control policies. The submission team refrained from making HRAC service interfaces
syntax or semantics dependent or oriented towards functionality of any particular application or
application domain. Instead, the design of the HRAC service introduces a notion of "secured
resource’" names and operations on them, aswell as dynamic attributes and policy evaluators. This
allows a more general approach that may be tailored to the specifics of most applications
functionality and the semantics of data they manipulate. The submitters believe that an
adminigtrative interface on the DynamicAttributeService will allow applicationsto provide “plug-
ins’ that are separate from the application logic to support access policies where intimate
application knowledge isrequired. The submitterswill attempt to agree on this administrative
interface for the final submission.

2.5.3 Format of Authorization Rules

The submission team decided NOT to specify interfaces through which authorization rules or
policies are to be expressed. The specified model of HRAC service allows policy evaluators that
implement different authorization policies. Policy evaluators may have any interfaces and/or
mechanism for expressing authorization rules that govern access to secured resources. Such
interfaces and/or mechanisms are beyond the scope of this submission.

2.5.4 Quality of Protection as Authorization Decision Factor

It may be reasonable to grant particular access to secured resources only if the quality of
protection (QoP) for the reply is of sufficient strength (for example, data confidentiality and/or
data integrity is guaranteed). QoP can be considered as another factor in authorization decisions.
The current version of the submission is not providing mechanisms that allow QoP as a factor in
authorization decisions. The submission team did not reach consensus on whether to provide such
mechanismsin HRAC specification or have a separate service (thus another specification) that
would provide mechanismsfor this. The team may address this problem in the revised submission.

2.5.5 Exceptions

10/19/98 1:06 PM

In the current version of the submitted interface, exceptions are not present. It is not because the
submission team believes that no exceptions should be raised by the corresponding objects. The
exceptions will be specified in the future versions of the submission. At the time of this

Page 21 of 47

submission, we do not have consensus on what exceptions make sense to specify and how they
would be used by programmersin developing ADO clients and HRAC services.

10/19/98 1:06 PM Page 22 of 47

3. DfResourceAccessControl module

/1 File: DfResoureAccessControl

#i fndef _DF_RESOURCE_ACCESS CONTROL_| DL_
#define _DF_RESOURCE_ACCESS CONTROL_| DL_

#i ncl ude <orb.idl>
#i ncl ude <Security.idl>

#pragma prefix "ong.org"

nodul e Df Resour ceAccessContr ol

{
interface
b
interface
b
interface
b
interface
b
interface
b
interface
b
interface
b
b
#endi f //

AccessDeci si on {

Dynami cAttribut eService {

Pol i cyEval uat or Locat or {

Pol i cyEval uat or Locat or Admi n {

Pol i cyEval uat or {

Pol i cyEval uat or Adm n {

Deci si onConbi nat or {

_DF_RESOURCE_ACCESS_CONTROL_|DL_

#i ncl ude <Security.idl>

The types declared within the Security service and used by the HRAC are:

10/19/98 1:06 PM

Security::Attributelist

The DfResourceAccessControl contains four interfaces defined below and has type dependencies
on the CORBA Security Service and the CORBAMed NamingAuthority modules.

These types are used for consistency with CORBA Sec and have the same meaning when used in
HRAC interfaces. They aretypedef’d in this specification for ease of use.

Page 23 of 47

#pragma prefix "ong.org"

3.1 Types

In order to prevent name pollution and name clashing of IDL typesthis module (and all modules
defined in this specification) uses the pragma prefix that isthe omg DNS name.

There are a number of structured types used widdly through out the DfResourceAccessControl
Model. Thesetypes are described in this section:

3.1.1 Basic Types & Types used from the CORBA Security service

//*************************~k****~k**************************

/1 Basi c Types

//*************************~k****~k**************************

typedef sequence<bool ean> Bool eanLi st ;

typedef Security::AttributeList AttributelList;

Bool eanLi st

A sequence of boolean used as a return value when multiple decisions are requested. Thistypeis
used as areturn value in the multiple_access allowed() method of the AccessDecision interface.

Attributelist

10/19/98 1:06 PM

The Security::Attributelist is defined as followsin CORBA Security 1.2 (ptc/98-01-02). The
AttributelList is provided as an input parameter by the “application” client when arequest for an
access decisonismade. The Attributelist used for access decisions may be modified to include
dynamic attributes by use of the get_dynamic_attributes() method of the DynamicAttributeService
interface. Asa convenience to the reader, the structure of a Security::Attributelist is replicated
below.

typedef sequence<octet> Opaque;

/] security attributes
typedef unsigned long SecurityAttributeType;

struct ExtensibleFamly {
unsi gned short fam | y_definer;
unsi gned short famly;

siruct AttributeType {
Ext ensi bl eFam |y attribute_famly;
SecurityAttributeType attribute_type;

H

struct SecAttribute {
AttributeType attribute_type;
Opaque defining_authority;
Opaque val ue;

/1 the value of this attribute can be
/1 interpreted only with know edge of type

Page 24 of 47

typedef sequence <SecAttribute> AttributelList;

3.1.2 Typesthat identify and manage information about secured resources

//*************************~k****~k**************************

/1 Types that identify a secured resource
//~k*~k**~k*~k*~k~k***~k~k*~k*~k~k~k**~k~k*~k*~k~k*~k************************

typedef sequence<string> ResourceNane;

typedef sequence<string> OperationList;

Resour ceName

A ResourceName is used to identify a secured resour ce. ResourceName is a sequence of strings
allowing for groupings of resources. It isrequired that the first string in the sequence is formatted
asaNamingAuthority::QualifiedNameStr. This ensures globally unique resource names (and/or
groups) See NamingAuthority module in corbamed/98-02-29. |ssue: Submitters are discussing
whether we want to make this a stronger requirement by putting the type in the IDL (thisisa
typedef for a string with a standard format in NamingAuthority).

Oper ati onLi st

An OperationList isused to identify alist of operations that may be performed on a secured
resource.

3.1.3 Types associated with evaluating Access Policy

//*************************~k**************************

/1 Types associated with evaluating Access Policy
//~k***~k~k*~k*~k~k~k**~k~k~k~k*~k~k*~k**~k*~k************************
typedef string PolicyNane;

typedef sequence<Pol i cyName> Pol i cyNanelLi st ;

const Pol i cyName NO_ACCESS _POLI CY = "NO ACCESS _POLI CY";

interface PolicyEval uator;
typedef sequence<Pol i cyEval uator> Pol i cyEval uat orLi st ;

struct PolicyDecisionEval uators {
Pol i cyEval uat or Li st policy_evaluator_list;
Deci si onConbi nat or deci si on_conbi nat or;

Pol i cyName

10/19/98 1:06 PM

A PolicyName is a string used to identify an access policy for a secured resource. Thistypeis
only used in the PolicyEvalutorAdmin interface. It isused as an input parameter to the

replace _policy(), add_policy(), and set_default_policy() methods of the PolicyEvaluatorAdmin
interface. PolicyNames are assigned by the administrative interface of the policy engine and
cannot be modified or controlled by the HRAC. Thereis one standard PolicyName of
“NO_ACCESS POLICY”. Seethe PolicyEvaluatorAdmin interface for usage.

Page 25 of 47

Pol i cyNaneLi st

A PolicyNamel ist is a sequence of PolicyNames. It isreturned from thelist_policy() method of
the PolicyEvaluatorAdmin interface.

Pol i cyEval uat or Li st

A PolicyEvaluatorList isa sequence of PolicyEvaluator object references. The
PolicyEvaluatorAdmin interface allows the association of lists of PolicyEvaluators with a
ResourceName. Thistypeisused as an input parameter in the add_evaluatory(),
replace_evaluators(), and set_default_evaluators() methods of thisinterface. See also
PolicyDecisionEvaluators below for additional usage.

Pol i cyDeci si onEval uat ors

The PolicyDecisionEvaluators struct contains a PolicyEvaluatorList and the Decis onCombinator.
Thisisthe type returned from the get_policy decision_evaluators() method of the
PolicyEvaluatorL ocator interface. This structure contains the references of all the objects that
must be consulted by the ADO during an access decision.

3.1.4 Types used to request access decisons

//*************************~k**************************

/1 Types used to request Access Deci sions
//~k***~k~k*~k*~k~k~k**~k~k~k~k*~k~k*~k**~k*~k************************

struct AccessDefinition {
Resour ceNane resour ce_nane;
string operation;

b

typedef sequence<AccessDefinition> AccessDefinitionList;

enum Deci si onResul t { ACCESS_DECI SI ON_ALLOWED,
ACCESS_DECI SI ON_NOT_ALLOWED,
ACCESS_DECI SI ON_UNKNOWN

b

typedef sequence<Deci si onResul t > Deci si onResul t Li st;

AccessDefinition

The AccessDefinition struct is provided to allow multiple access definitions to be defined. 1t
contains the ResourceName and the operation name for the secured resource access being
requested. AccessDefinition isused as an input parameter to the access _allowed() method of the
AccessDecision interface and the evaluate() method of the PolicyEvaluator interface.

AccessDefinitionList

AccessDefinitionList isthe type used to request multiple access decisionsin a single operation. It
isused as an input parameter to the multiple_access allowed() method of the AccessDecision
interface and the multiple_evaluate() method of the PolicyEvaluator interface.

Deci si onResul t

DecisonReault is an enum with three possble values. The values are:

10/19/98 1:06 PM Page 26 of 47

ACCESS DECISION_ALLOWED: the policy evaluated for this ResourceName, operation and
Attribute list indicates that accessis ALLOWED.

ACCESS _DECISION_NOT_ALLOWED: the policy evaluated for this ResourceName, operation
and Attribute list indicates accessisNOT_ALLOWED.

ACCESS_DECISION_UNKNOWN: the policy evaluated for this ResourceName, operation and
Attribute list indicates an access decision cannot be made.

Thistypeisused asaresult in access decisions where access policy is applied. Thisisthe type
returned from the evaluate() method of the PolicyEvaluator.

Deci si onResul t Li st

DecisonResultLigt isa sequence of DecisonResult. Thisisthe type returned from the
multiple_evaluate() method of the PolicyEvaluator and is the type provided as an input parameter
to the combine_decisions() method of the DecisionCombinator.

3.1.5 Exceptions

The following exceptions are generally useful by most or all of the interfaces of this module.

Exceptions will be added in the final subm ssion.

3.2 AccessDecision interface

//******************k*********************************

/1 interface AccessDeci sion

//******************k*********************************

interface AccessDeci sion {

bool ean access_al | owed(
i n Resour ceNane resour ce_nane,
in string operation,
in AttributeList attribute_list

)

Bool eanLi st multiple_access_al |l owed(
in AccessDefinitionList access_requests,
in AttributelList attribute_list

The Access Decision object isused to request decisions on access based on a ResourceName, an
Operation, and alist of SecAttributes. This submission provides a framework for the support of
many policy evaluators. It isout of the scope of this submission to mandate how policy is defined
or evaluated using the information provided by the client at the time access decisons are

10/19/98 1:06 PM Page 27 of 47

requested. Thisisthe only interface that is necessary for a client to be familiar with in order to
obtain access decisions from the HRAC.

access_al | owed()

A single access decision isrequested and a boolean is returned

mul ti pl e_access_al | owed()

Multiple access decisions are requested in a single method invocation and a sequence of booleans
are returned. The boolean sequence maps one to one in the same order to the provided sequence
of ResourceName/operation pairs.

3.3 DynamicAttributeService interface

//*************************~k****************************

/1 interface Dynam cAttri buteService
//~k~k**~k~k~k~k*~k~k*~k**~k*~k**~k*~k*~k~k***~k************************

interface Dynam cAttributeService {

AttributeList get_dynam c_attributes(
in Attributelist attribute_list,
in ResourceNane resour ce_nane,
in string operation

The DynamicAttributeService interface is used to obtain a new list of SecAttributesthat are
applicable to an access decision. This service may encapsulate callsto a relationship service
and/or application specific logic to determine how the original Attributelist provided by the client
should be modified.

NOTE: Itistheintent of the submittersto provide an administrative interface for the
DynamicAttributeService in the final submission. Thiswould provide a standard way for an
application to register custom DynamicAttributeService(s) that would be used by this object at
access decision time to determine applicable dynamic attributes.

get _dynami c_attributes()

This method takes the parameters provided by the client of the AccessDecision object; the
AttributeList, the ResourceName, and the operation and determines what (if any) dynamic
attributes should be added to the AttributeList. In addition, the returned AttributeList may be
modified by this service. The service may add or remove SecAttributesto thislist. Itisthe
returned list of SecAttributesthat isused asthe basis of access decisions by the HRAC.

3.4 PolicyEvaluatorLocator interface

//*************************~k****************************

/1 interface PolicyEval uatorLocat or
//~k~k**~k~k~k~k*~k~k*~k**~k*~k**~k*~k*~k~k***~k************************

interface PolicyEval uatorLocator {

readonly attribute PolicyEval uat orLocat or Adm n policy_eval uator_| ocator_adni n;

Pol i cyDeci si onEval uat ors get _policy_deci si on_eval uat or s(

10/19/98 1:06 PM Page 28 of 47

in ResourceNane resour ce_name

The PolicyEvaluatorL ocator interface is used to locate the PolicyEvaluators and the
DecisionCombinator associated with a ResourceName. This submission provides a framework
for the support of one or more policy evaluators for a single resource.

readonly attribute PolicyEval uatorLocat or Adm n

The PolicyEvaluatorL ocator’ s administrative interface can be obtained via this attribute. NOTE:
It is an open issue whether or not an administrative interface isrequired to be available for a
compliant implementation.

get _policy_decision_eval uat ors()

A PolicyDecisionEvaluators structure which contains a list of PolicyEvaluator object references
and the DecisionCombinator object reference for the resource is returned to the client.

3.5 PolicyEvaluatorLocatorAdmin interface

//*************************~k****~k************************

/1 interface PolicyEval uatorLocat or Adm n
//~k~k~k*~k~k*~k**~k*~k**~k*~k*~k~k***~k~k*~k*~k~k~k***********************

interface PolicyEval uat orLocat or Adm n {

voi d add_eval uators (
in PolicyEval uatorlList policy_evaluator_list,
in ResourceName resource_nane

)

voi d repl ace_eval uators (
in PolicyEval uatorlList policy_evaluator_list,
in ResourceNanme resource_nane

)

voi d set_defaul t_eval uat or s(
in PolicyEval uatorlList policy_evaluator_list
)

voi d appl y_comnbi nator (
in DecisionConbi nator deci si on_comnbi nat or
in ResourceNanme resour ce_name

)

voi d set_defaul t_conbi nat or(
in DecisionConbinator decision_comnbinator
)

The PolicyEvaluatorL ocatorAdmin object is used to associate PolicyEvaluators with a
ResourceName. The object is also used to associate the appropriate DecisionCombinator with
the ResourceName. This submission provides a framework for the support of one or more policy
evaluators for a single resource.

add_eval uators()

A ligt of PolicyEvaluatorsis added to the list of evaluators for the named resource. These
evaluatorswill bein thelist of PolicyEvaluators returned by the PolicyEvaluatorL ocator

10/19/98 1:06 PM Page 29 of 47

get_policy_decison_evaluators) method. The addition of evaluators to a ResourceName which
previoudy had none resultsin the added list of evaluators being the only evaluators consulted on
an access decision (system default evaluators are no longer consulted unless a system default
evaluator isa member of the added list).

repl ace_eval uators()

A ligt of PolicyEvaluatorsisassigned for the named resource. If the resource had existing
PolicyEvaluators assigned, they are removed and the entire list is replaced with the ones provided
in thismethod. The replacement of evaluators for a resource which previoudy had none resultsin
the added list of evaluators being the only evaluators consulted on an access decison (system
default evaluators are no longer consulted unless a system default evaluator is a member of the
replacement list).

These evaluators will be the PolicyEvaluators returned by the PolicyEvaluatorL ocator
get_policy_decision_evaluators() method.

set _defaul t _eval uators()

Theligt of PolicyEvaluators provided is set as the default evaluators for any ResourceName for
which PolicyEvaluators have not been explicitly assigned. Default evaluators are overridden by
theadd evaluators() or replace_evaluators() methods. The default evaluators will be returned by
the PolicyEvaluatorL ocator get_policy _decision_evaluators() method when no PolicyEvaluators
have been explicitly assigned for a ResourceName.

appl y_conbi nat or ()

A DecisonCombinator is specified for the named resource. This combinator will be returned by
the PolicyEvaluatorL ocator get_policy _decision_evaluators() method. The DecisionCombinator
provided replaces any previous combinator specified for the secured resource.

set _def aul t _combi nator ()

The DecisonCombinator provided is set as a default. This combinator is now the combinator
used when a DecisionCombinator has not been explicitly specified for a secured resource. This
combinator will be returned by the PolicyEvaluatorL ocator get_policy decision_evaluators()
method for these resources.

3.6 PolicyEvaluator interface

10/19/98 1:06 PM

//*************************~k****************************

/1 interface PolicyEval utator
//~k~k**~k~k~k~k*~k~k*~k**~k*~k**~k*~k*~k~k***~k************************

interface PolicyEval uator {
readonly attribute PolicyEval uator Adm n policy_eval uator_adni n;

Deci si onResul t eval uat e(
in ResourceNanme resour ce_nane,
in string operation,
in AttributeList attribute_list

)

Deci si onResul tLi st nul tipl e_eval uat e(
in AccessDefinitionList access_requests,
in AttributeList attribute_list

Page 30 of 47

The PolicyEvaluator interface is used to obtain an access decision based on an encapsulated policy
for the ResourceName/operation when provided a list of effective Security Attributes for the
requestor. Thissubmission provides a framework for the support of one or more policy
evaluators for a single resource.

readonly attribute PolicyEval uat or Adm n

If the PolicyEvaluator has an associated administrative interface, it can be obtained via this
attribute. 1f an administrative interface is not available for this evaluator, this attribute will be nil.

eval uat e()

A single access decision is requested based on access policy(s) this evaluator determinesis
appropriate for the named resource. The decision is based on the ResourceName, the operation,
and the effective Security Attributes. The SecAttributes passed to the AccessDecision object by
the client in access_allowed() may have been modified by the DynamicAttributeService
get_dynamic_attributes() method before the PolicyEvaluator iscalled. The DecisonResult isa
ternary result. The DecisonResult isasfollows:

ACCESS _DECISION_ALLOWED: the policy evaluated for this ResourceName, operation and
Attribute list indicates that accessis ALLOWED.

ACCESS _DECISION_NOT_ALLOWED: the policy evaluated for this ResourceName, operation
and Attribute list indicates accessisNOT_ALLOWED.

ACCESS_DECISION_UNKNOWN: the policy evaluated for this ResourceName, operation and
Attribute list indicates an access decision cannot be made.

mul ti pl e_eval uat e()

A multiple access decision is requested based on access policy(s) this evaluator determinesis
appropriate for the named resources. Each decision is based on the ResourceName, the operation,
and the effective Security Attributes. The SecAttributes passed to the AccessDecision object by
the client in access_allowed() may have been modified by the DynamicAttributeService
get_dynamic_attributes() method before the PolicyEvaluator iscalled. The DecisonResultsisa
sequence of ternary result as defined in the evaluate() method. The DecisonResults sequence
maps one to one in the same order to the provided sequence of ResourceName/operation pairs.

3.7 PolicyEvaluatorAdmin interface

10/19/98 1:06 PM

//*************************~k****~k************************

/1 interface PolicyEval uat or Adm n
//~k~k~k*~k~k*~k**~k*~k**~k*~k*~k~k***~k~k*~k*~k~k~k***********************

interface PolicyEval uator Adm n {

voi d repl ace_policy(
in PolicyName policy_naneg,
in ResourceNanme resource_nane
)
voi d add_policy(
in PolicyName policy_nane,
in ResourceNanme resource_nane

)
Pol i cyNanmeLi st list_policy();

voi d set _defaul t _policy(

in PolicyNane policy_name

Page 31 of 47

}

The PolicyEvaluatorAdmin interface is used to associate named access policies with secured
resources. It isassumed that the administrative tool used to create and manage access policies
(outside the scope of this submission) provides a mechanism to allow policies to be associated
with “names’ which are represented as PolicyName (a string). This PolicyEvaluatorAdmin
interface allows those policiesto be applied “by name’ to a secured resource represented by a
ResourceName.

Thisinterface is primarily provided for the application that wishesto assign a policy to a newly
created resource programatically at the time of resource creation. It does, however, require that
the application have knowledge of the named policiesin order to choose an appropriate policy for
access decisions.

repl ace_policy()

The policy identified by PolicyName is associated with the secured resource identified by the
ResourceName. If the PolicyNameisNO_ACCESS POLICY, then all policy isremoved for the
resource. If aPolicyName isapplied to a ResourceName that has existing policy, then the policy
will be replaced by the policy identified by this PolicyName.

add_policy()

The policy identified by PolicyName is added to the list of policies used when making access
decisions for the secured resource identified by the ResourceName. If a PolicyNameis added to a
resource that has existing policy, then the policy will be added to the list of policiesthat control
access decisions for the resource. An implementation is not required to support multiple policies
for aresource. If the implementation does not support the application of multiple policies, then an
shall bethrown for thismethod. NOTE: Exception will be defined in the final submission.

list_policy()
A ligt of all exigting PolicyNamesisreturned to the client.

set _defaul t _policy()

The policy identified by PolicyName is associated (as default) with any secured resource which
has not yet been assigned an access policy.

3.8 DecisonCombinator interface

//*************************~k****~k*************************

/1 i nterface Deci si onConbi nat or
//~k*~k**~k*~k**~k*~k*~k~k***~k~k*~k*~k~k~k**~k~k*************************

interface Deci si onConbi nat or {

bool ean conbi ne_deci si ons(
in DecisionResultList decision_result_list
)

The DecisonCombinator interface is used to combine the decisions of multiple PolicyEvaluators.
Combinators may be provided with different behaviors. A combinator that supported an “ANY”
policy would return TRUE if any of PolicyEvaluators returned

10/19/98 1:06 PM Page 32 of 47

ACCESS DECISION_ALLOWED. A combinator that supported an “ALL" policy would return
TRUE only if all of PolicyEvaluators returned ACCESS DECISION_ALLOWED.
DecisonCombinators may also be arbitrarily complex(although the initial submission doesn’t
fully support this). A default combinator may be used for all access decisons, or combinators
may be chosen specifically for access decisions on specific secured resources.

The submitters have agreed that complex combinators (wishing to apply precedence) may require
more information than what is currently passed in the DecisionResultList. It is, however, still an
issue of exactly what would be useful in the general case as additional parametersto the
DecisonCombinator. Thisissuewill be addressed in the final submission.

conbi ne_deci si ons()

The DecisonCombinator takes the decision results (a DecisonResultList) from all of the
PolicyEvaluators and returns a boolean result. Thisisthe result that will be returned by the
AccessDecision object to the original client of the HRAC facility.

10/19/98 1:06 PM Page 33 of 47

4. DfHealthCareResource module

This module will be added in the final submission and will contain the healthcare specific secured
resources requested in the RFP. The submitters are planning to work with the Clincial
Observation Access Service (COAS) submitters to ensure that thislist of resourcesis compatible
with the requirements of the COAS submission.

10/19/98 1:06 PM Page 34 of 47

5. Conformance Classes

Conformance classes will be defined in the final submission.

10/19/98 1:06 PM Page 35 of 47

6. Appendix - Use Case Examples

This appendix presents examples illustrating healthcare scenarios and the use of HRAC to provide
access control for the instances of healthcare information access implied by these scenarios. Each
example consists of several Use Cases:

1. A description of the healthcare scenario which involves one or more accesses to healthcare
information.

2. For each healthcare information access required by the healthcare scenario:

A. A description of the actions of the healthcare application, the client of the Access
Decision Object (ADO).

B. A description of ADO actions with an Object Interaction Diagram (OID).

Before presenting the Use Cases, a generic OID describing the ADO is provided.

6.1 Generic ADO Object Interaction Diagram

This section shows the generic Object Interaction Diagram for the ADO.

Policy Evaluator
Locator

Dynamic Attribute Evaluation

Combinator

ADO Client

Policy Evaluator SaviEe

d 196

<
3
o
2
S
c
2]
<

Ap 196

elep_sse0oe
S8INgLUE_oIureu;

POMOIE_SS3008

10/19/98 1:06 PM Page 36 of 47

6.2 Healthcare Scenario: Out-patient Visit to Attending Physician

10/19/98 1:06 PM

This scenario (seetable 1) illustrates the interaction with a patient record as a result of a patient’s
visit with an attending physician at the hospital on an outpatient basis. In this example, the access
control policy pertinent to this scenario is called the “ Basic Hospital Patient Record Access
Palicy.”

Asdescribed in more detail in the normative part of this document, an access control policy within
HRAC isrealized by an evaluator applied to static attributes, dynamic attributes, and other factors,
such as, time of day and location of the principal. An evaluator can be implemented asan
interpreter of rules expressed in some scripting language, e.g., SQL, as a process for which the
rules are encapsulated as part of the process, e.g., Java Classes, or as some combination of these
methods.

Static attributes are used for describing relatively fixed properties of users and resources, such as,
basic user role and resource creation date. The values of gtatic attributes are typically set by a
security administrator and are obtained by the application in an implementation specific manner,
e.g., from the principal’ s credentials. While the use of a static attribute in policy is specified by a
security administrator, the values of dynamic attributes are typically set as part of normal
information processing. Unlike static attributes which are usually properties of (i.e,metadata
about) information content, values of dynamic attributes are information content which are
necessary to make an access decision. Some examples of dynamic attributes, which may be
contained in a patient record or elsawhere, are:

A ligt of physicians, i.e, attending physicians, which are currently treating the patient.
An authorization permitting the rel ease of mental health information to designated parties.

Depending on the implementation, a dynamic attribute may be the value of the dynamic attribute
or areference to the value of the dynamic attribute. If a reference, then the dynamic attribute value
is obtained by the evaluator if and when the evaluator determines that the value is needed to make
the access decision.

HRAC is able to support more than one access policy. This healthcare scenario describes HRAC
functionality using the Basic Hospital Patient Record Access Policy. Different developers may
implement different access policy evaluators. Dynamic attributes may be associated with only one
or several evaluators. New dynamic attributes may be added to the Dynamic Attribute Service of
an HRAC when new evaluators are installed. Once dynamic attributes are added to the Dynamic
Attribute Service, they may be available for use by all evaluators. In addition to the Basic Hospital
Patient Record Access Policy, other policies may specify access control requirements for HIV or
mental health information resources which are part of the patient record.

The Basic Hospital Patient Record Access Policy used in this exampl e specifies the conditions
under which an attending physician can access a patient record. The policy specifiesthat attending
physicians may read/update a patient record and/or modify certain authorization settingsin a
patient record. Within this policy, the term “update” when applied to clinical information refersto
an append operation. Clinical information in the patient record once entered may not be modified.

Several gtatic and dynamic attributes are used by the HRAC evaluator which implements the Basic
Hogspital Patient Record Access Policy. Among these are the static attribute “role” and the
dynamic attribute “principal/patient_relationship.” The value of the static attribute role specifies
the basic role of a user, such as, physician, nurse, and registrar. In this example, the value of roleis
obtained from the principal’ s credentials. The value of the dynamic attribute
principal/patient_relationship specifies the relationship between the principal accessing the patient
record and the patient who is the subject of the patient record being accessed, e.g., “primary_care,”
“attending,” “consulting.” In this example, the value of the principal/patient_relationship dynamic
attribute is obtained by the Dynamic Attribute Service by accessing the content of the patient
record which contains a list of attending physicians.

Page 37 of 47

Use Case Nane

Qut-patent Visit to Attendi ng Physician

Goal in Context

Physi ci an provides care to a visiting patient

Scope & Level

Summary

Precondi ti ons

Patient records already exist in the system there is
al ready sone kind of relationship between the patient
and the physician (attending, consulting, admitting,
etc.)

Success End Condition

Patient records are updated according to the visit
results.

Fail ed End Condition

Patient records are not updated according to the
visit results.

Primary Actors

Care providi ng physician

Secondary Actors

Trigger

Patient visits correspondi ng physician.

Appl i cabl e Access
Pol i cy

Basi ¢ Hospital Patient Record Access

Di agram

Log Into
the
System

Read
Patient

= | Records

Examine
Patient

Update
Patient
Records

Descri ption Step

10/19/98 1:06 PM

Action

Page 38 of 47

1 Physi ci an (or physician representative) logs into the
informati on systemunless it was done previously.
2 Physician retrieves patient records and browses them
3 Physi ci an exani nes the patient.
4 Physi ci an updates patient records.
Ext ensi ons Step Branchi ng Acti on
4 a Physi ci an changes aut hori zation settings for the
patient records (or their sub-set) according to the
patient request and/or sensitivity of the information
wi th which records are updated
Vari ations Step Branchi ng Acti on
No vari ations

Rel ated | nfornmati on

Priority

Hi gh

Per f or mance

1 hour

Frequency

Many times per hour through the hospita

Channel s to actors

Vi si on, speech, various instruments and devices in
order to exam ne the patient; conputer GUJ to |og
into the system brows and update patient records.

Open | ssues

VWhat aut horization settings of the patient records
can a rel ated physici an change?

VWhat if another related physician has |imted access
to records that are interesting in the context of the
visit and the patient agrees those records can be

di scl osed?

Super or di nat e use cases

No super ordi nat es

Subor di nat e use cases

Log into the system Read Patient Records, Exam ne
Patient, Update Patient Records, Change Authorization
Settings for the Patient Record(s).

10/19/98 1:06 PM

Table 1: Healthcare Scenario: Out-patient Visit to Attending Physician

Asshown in table 1, there are three types of access to the patient record involved in this scenario:
read, update, and change authorization.

The next section describes the actions of the application program (the ADO client) in reading the
patient record including how the ADO is used to determine access according to the Basic Hospital
Patient Record Access Palicy.

Page 39 of 47

6.2.1 ADO Client Actions: Read Patient Record

Use Case Nane

ADO Client Actions: Read Patient Record

Goal in Context

Application program (ADO client) browses patient
record

Scope & Level

Subf uncti on

Precondi ti ons

Patient records already exist in the system
physi ci an has | ogged into application program
application programinitiated successfully.

Success End Condition

The intended part of patient records are "read"
accessed by the caregiver.

Fail ed End Condition

The intended part of patient records are not "read
accessed by the caregiver.

Primary Actors

1. dient program acting on behalf of the caregiver
(dient)

2. CORBA-conpliant application service (Service),
whi ch provides "read" access to the required
i nformation

Secondary Actors

1. Access Decision bject (ADO, which provides
i nt er f ace DfResourceAccessControl::AccessDecision

Trigger

A caregiver is attenpting to "browse" parts of the
pati ent nedical record.

Appl i cabl e Access
Pol i cy

Basi c Hospital Patient Record Access: An attending
physician may read any part of the patient record.

10/19/98 1:06 PM

Page 40 of 47

Di agram

Obtain
Resource
Name

Obtain
Principal
Security

Attributes

L
1i%

ADO Obtain
Client Authorization
Decision

Enforce
Authorization
Decision

Descri ption Step Action

1 Application program (ADO client), acting on behalf of
t he physi ci an, obtains the resource_name for the part
of the patient record to be read and static_attributes.

2 ADO cl i ent invokes access_allowed(resource_name, “read”,
static_attributes).

3 | f access_allowed() returns “true,” then ADO client
reads and di spl ays requested part of the patient
record to physician; otherwi se, ADO Cient displays
error.

Ext ensi ons Step Branchi ng Acti on
No vari ations

Vari ations Step Branchi ng Acti on
No vari ations

Rel ated | nfornmati on

Priority

Hi gh

Per f or mance

Frequency

Many times per hour through the hospita

Channel s to actors

Open | ssues

Super or di nat e use cases

Qut-patent Visit to Attendi ng Physician

10/19/98 1:06 PM

Page 41 of 47

Subor di nat e use cases ADO Actions: Read Patient Record

Table 2: ADO Client Actions. Read Patient Record

Table 2 describes the actions of the application program (ADO client) in providing the physician
the capability of browsing resources contained in the patient record. The application program
obtains from the physician the name of the resource to be read. It then obtains the static attributes
from the physician’s credentials. The application invokes the ADO which returns an indication of
whether the physician is able to read the requested resource within the patient record. If the
physician has read access to the resource, the application displays the resource for the physician.

The next section describes the actions of the ADO when it isinvoked by the application to
determine if the physician has read access to the patient record resource.

6.2.2 ADO Actions. Read Patient Record

Use Case Nane ADO Actions: Read Patient Record

Goal in Context ADO renders access decision for a resource which is
part of the patient record.

Scope & Level Subf uncti on

Precondi ti ons Patient records already exist in the system

Application program has invoked ADO

Success End Condition An access decision is returned by the ADO to the
application program

Fail ed End Condition An exception occurred and an access decision is not
returned by the ADO to the application program
Primary Actors 1. Access Decision bject (ADO, which provides
i nt erface DfResourceAccessControl::AccessDecision
Secondary Actors 1. Policy Locator Object(PL), which provides the
interface

DfResourceAccessControl::PolicyEvaluatorLocator

2. Dynamic Attribute Service Object(DAS), which
provi des interface
DfResourceAccessControl::DynamicAttributeService

3. Policy Evaluator Object (PE), which provides the interface
DfResourceAccessControl::PolicyEvaluator

4. Policy Conbinator Object(DCO, which provides the
i nt erface DfResourceAccessControl::PolicyCombinator

Trigger Application program (ADO client) invokes ADQO
Appl i cabl e Access Basi c Hospital Patient Record Access: An attending
Pol i cy physician may read any part of the patient record

10/19/98 1:06 PM Page 42 of 47

Di agram

Policy
Evaluator
Locator

Dynamic
Attribute
Service

Basic Hospital
Patient Policy
Evaluator

Evaluation
Combinator

ToRNERS Koo 195

5 196

pamo|e_ssaaoe
SaINqUIE_ojweu

resource_na

, operation = "read", principal_se(

EIE]

Descri ption Step Action

1 ADO i nvokes get_policy_decision_evaluators(resource_name)
whi ch returns Policy Evaluator for the Basic Hospita
Patient Record Access Policy and the
Decision_Combinator.

2 ADO i nvokes get_dynamic_attributes(static_attributes,
resource_name, “read”) whi ch returns attributes’, a |ist of
all static and dynam c attributes required for
Policy Evaluator to nake the access deci sion.

3 ADO i nvokes Policy_Evaluator.evaluate(resource_name,
attributes’, “read”) whi ch returns
ACCESS_DECISION_ALLOWED.

4 ADO returns the bool ean result from
Decision_Combinator.combine_decisions({* ACCESS_DECISION_A
LLOWED"})

Ext ensi ons Step Branchi ng Acti on
No vari ations

Vari ations Step Branchi ng Acti on
No vari ations

Rel ated | nfornmati on

Priority

Hi gh

Per f or mance

Frequency

Many times per hour through the hospita

Channel s to actors

Open | ssues

Super or di nat e use cases

ADO Client Actions: Read Patient Record

Subor di nat e use cases

10/19/98 1:06 PM

Table 3: ADO Actions. Read Patient Record

Page 43 of 47

10/19/98 1:06 PM

Table 3 describes the actions of the ADO in providing an access decision when invoked by the
application in order to determineif the physician the capability of browsing resources contained in
the patient record. Given resource_name, aresource within the patient record, the operation
“read,” and static_attributes, alist of gatic attributes, the ADO invokes
get_policy_decision_evaluators() with the resource_name which returns the single policy
evaluator, Policy_Evaluator, for the Basc Hospital Patient Record Access Policy and the
Decision_Combinator associated with resource_name. The ADO obtains dynamic
attributes by invoking get_dynamic_attributes() with static_attributes, resource_name,
and the operation “read.” Upon return, a combined list of static and dynamic attributesis now
contained in attributes’. The ADO then invokes the evaluator referenced by Policy Evaluator
which returns a DecisionResult. If attributes’ contains both the static attribute “physician” and
the dynamic attribute “ attending,” then the result from policy_evaluator is
ACCESS_DECISION_ALLOWED in accordance with the Basic Hospital Patient Record
Access Policy. Finally, the ADO invokes Decision_Combinator.combine_decisions() with
the result from the invocation of Policy_Evaluator and returnsthe result from
Decision_Combinator.combine_decisions() to the application.

Page 44 of 47

7. Appendix - Complete IDL

10/19/98 1:06 PM

/1 File: DfResourceAccessControl.idl

/1

#i f ndef _DF_ RESOURCE_ACCESS _CONTROL_|I DL_
#defi ne _DF_RESOURCE_ACCESS CONTROL_I DL_

#i ncl ude <orb.idl >
#i nclude "Security.idl"
#pragma prefix "ong.org"

modul e Df Resour ceAccessControl {

//*************************~k****~k**************************

/1 Basic Types (and forward refs)
//~k*~k**~k*~k*~k~k***~k~k*~k*~k~k~k**~k~k*~k*~k~k*~k************************

typedef sequence<bool ean> Bool eanLi st ;
typedef Security::AttributeList AttributelList;

interface DecisionConbinator;
interface PolicyEval uator;

interface PolicyEval uat or Locat or Admi n;
interface PolicyEval uat or Adm n;

//*************************~k****~k**************************

/1 Types that identify a secured resource
//~k*~k**~k*~k*~k~k***~k~k*~k*~k~k~k**~k~k*~k*~k~k*~k************************

typedef sequence<string> Resour ceNane;

typedef sequence<string> OperationList;

//*************************~k**************************

/1 Types associated with evaluating Access Policy
//~k***~k~k*~k*~k~k~k**~k~k~k~k*~k~k*~k**~k*~k************************

typedef string PolicyNaneg;
typedef sequence<Pol i cyName> Pol i cyNanelLi st ;

const PolicyNane NO _ACCESS POLICY = "NO _ACCESS_POLI CY";
typedef sequence<Pol i cyEval uator> Pol i cyEval uat orLi st ;
struct PolicyDecisionEval uators {

Pol i cyEval uat or Li st policy_evaluator_list;
Deci si onConbi nat or deci si on_conbi nat or;

//~k***~k~k*~k*~k~k~k**~k~k~k~k*~k~k*~k**~k*~k************************
/1 Types used to request Access Deci sions

//*************************~k**************************

struct AccessDefinition {
Resour ceNane resour ce_nane,;
string operation;

b

typedef sequence<AccessDefinition> AccessDefinitionList;

enum Deci si onResul t { ACCESS_DEC! SI ON_ALLOWED,
ACCESS_DECI SI ON_NOT_ALLOWED,
ACCESS_DECI SI ON_UNKNOWN

}s

typedef sequence<Deci si onResul t> Deci si onResul t Li st;

Page 45 of 47

10/19/98 1:06 PM

//***************~k****~k**k*~k**************************

/1 interface AccessDeci sion
//~k***~k~k*~k*~k~k~k**~k~k~k~k*~k~k*~kk*~k*~k************************

interface AccessDeci sion {

bool ean access_al | owed(
i n Resour ceNane resour ce_nane,
in string operation,
in AttributeList attribute_list
)

Bool eanLi st nultiple_access_al | owed(
in AccessDefinitionList access_requests,

in AttributelList attribute_li st
//~k~k**~k~k~k~k*~k~k*~k**~k*~k**~k*~kk~k~k***~k************************
/1 interface Dynam cAttri buteService

//********************~k**k*~k****************************

interface Dynam cAttributeService {

AttributeList get_dynam c_attributes(
in Attributelist attribute_list,
in ResourceNane resour ce_nane,

in string operation
//~k~k**~k~k~k~k*~k~k*~k**~k*~k**~k*~kk~k~k***~k************************
/1 interface PolicyEval uatorLocat or

//********************~k**k*~k****************************

interface PolicyEval uatorLocator {

readonly attribute

Pol i cyEval uat or Locat or Adnmin policy_eval uator_| ocat or _admi n;

Pol i cyDeci si onEval uat ors get _policy_deci si on_eval uat or s(

in ResourceNane resour ce_name
//~k*-k****-k***
/1 interface PolicyEval uatorLocat or Adm n

//********************~k**k*~k****~k************************

interface PolicyEval uat orLocat or Adm n {

voi d add_eval uators (
in PolicyEval uatorlList policy_evaluator_list,
in ResourceName resource_nane

)

voi d repl ace_eval uators (
in PolicyEval uatorlList policy_evaluator_list,
in ResourceNanme resource_nane

)

voi d set_defaul t_eval uat or s(
in PolicyEval uatorList policy_evaluator_list

)

voi d appl y_comnbi nator (
in DecisionConbinator decision_conbinator,
in ResourceNanme resour ce_name

Page 46 of 47

10/19/98 1:06 PM

)

voi d set_defaul t_conbi nat or(
in DecisionConbinator decision_comnbinator

//~k~k**~k~k~k~k*~k~k*~k**~k*~k**~k*~kk~k~k***~k************************
/1 interface PolicyEval utator

//***************~k****~k**k*~k****************************

interface PolicyEval uator {
readonly attribute PolicyEval uator Adm n policy_eval uator_adni n;

Deci si onResul t eval uat e(
in ResourceNanme resour ce_nane,
in string operation,
in AttributeList attribute_list
)

Deci si onResul tLi st nul tipl e_eval uat e(
in AccessDefinitionList access_requests,
in AttributeList attribute_list

)
}s

//********************~k**k*~k****~k************************

/1 interface PolicyEval utatorAdnin
//~k~k~k*~k~k*~k**~k*~k**~k*~k*~k~k**k~k~k*~k*~k~k~k***********************

interface PolicyEval uator Adm n {

voi d repl ace_policy(

in PolicyName policy_naneg,

in ResourceName resource_nane
)
voi d add_policy(

in PolicyName policy_nane,
in ResourceName resource_nane

)
Pol i cyNaneLi st list_policy();

voi d set _defaul t _policy(
in PolicyNane policy_name
)

}s

//********************~k**k*~k****~k*************************

/1 i nterface Deci si onConbi nat or
//~k****~k*~k**~k*~k*~k~k***~k~k*~kk~k~k~k**~k~k*************************

interface Deci si onConbi nat or {

bool ean conbi ne_deci si ons(
in DecisionResultList decision_result_list

#endif // Df ResourceAccessControl

Page 47 of 47

